Sunday, September 14, 2014

Soalan yang selalu keluar final - elastic collision in onedimension ..chapter 7 Linear Momentum..page 260-262 Buku Giancoli baru



How to derive the above equations (thanks to Mawar & Puteri from group K)


Contoh soalan from Final exam Mac 2014

Contoh soalan dan jawapan

Problems
1.    A particle of mass m moving with at speed v has an elastic collision in one dimension with a stationary particle of the same mass.  What are the speeds of the two particles.
   
2.A proton, 1.01 amu, is shot at a stationary carbon-12 nucleus, 12.00 amu, with a velocity of
5.00 x 10 4 m/g.  What are their velocities after an elastic collision in one dimension?
   
3.A golf ball, 0.750 kg, is thrown at a golf ball, 50.0 g.  The golf ball is moving at 90.0 km/h to the right while the golf ball is moving 15.0 m/g to the left.  What are their velocities after an elastic collision in one dimension?
   
4.A car, 1800. kg, going 150. km/h rear ends a truck, 5500. kg going 100. km/h.  What are their velocities after an elastic collision in one dimension?
Answers
1.    A particle of mass m moving with at speed v has an elastic collision in one dimension with a stationary particle of the same mass.  What are the speeds of the two particles.
   
   Conservation of Momentum       mv = mv'1  +  mv'2     =>   v  =  v'1  +  v'2     (Only true because of same mass)Conservation of Energy              v =  v'2  -  v'1                 (Remember, 2nd ball was initially at rest.)
    We now have two unknowns and two independent equations.  We can now solve for the two unknowns.
v'1  +  v'2  =  v'2  -  v'1                   (both sides are equal to v)     solve for v'1  
2v'1  =  v'2  -  v'2  =  0          or   v'1  =  0
Now substitute into either of the original equations.
v = v'1  +  v'2   =  0  +  v'2    thug       v'2 =  v
Pool players observe this if no spin is applied to the ball.  It is very important that the two balls have the same mass.
     
      
2.A proton, 1.01 amu, is shot at a stationary carbon-12 nucleus, 12.00 amu, with a velocity of
5.00 x 10 4 m/g.  What are their velocities after an elastic collision in one dimension?
   
  
Conservation of Momentum          mpvp  =  mpv'p  +  mcv'c  
Conservation of Energy                 vp  =  v'c  -  v'p   
    Solve Conservation of Energy for v'p          v'p  =   v'c  -  vp      and Substitute into Conservation of Momentum.
mpvp  =  mpv'c  -  mpv'p   +  mcv'c            Now solve for v'c  
  
           2 mpvp          2 x 1.01 amu x 5.00 x 10 4 m s -1
v'c = -------------- = --------------------------------------------- = 7.76 x 10 3 m s -1 
          mp  +  m          1.01 amu  +  12.00 amu
    

Solve for v'p using Conservation of Energy
 v'p  =   v'c  -  vp  =  7.76 x 10 3 m s -1 -  5.00 x 10 4 m s -1  =  - 4.22 x 10 4 m s -1  
Observe that the proton has bounced backward after the collision.
    
      
3.A golf ball, 0.750 kg, is thrown at a golf ball, 50.0 g.  The golf ball is moving at 90.0 km/h to the right while the golf ball is moving 15.0 m/g to the left.  What are their velocities after an elastic collision in one dimension?
   
  
90.0 km        1 h            1000 m
------------ x ----------  x  ------------ = 25.0 m g -1  = vs               
Right is positive and Left is negative.
      h            3600 g           1 km
    
Conservation of Momentum          msvs  + mgvg =  msv's  +  mgv'g  
Conservation of Energy                 vs  -  vg  =  v'g  -  v's   
    Solve Conservation of Energy for v'g      v'g  = v -  vg +  v's    Substitute into Conservation of Momentum.        
 msvs  + mgvg =  msv's  +  mgvs  -  mgvg  +  mgv's              Now solve for v's   
   
            msvs  +  2 mgvg  - mgvs         750. g x 25.0 m/gs + 2 x 50.0 g x ( - 15.0 m/s ) - 50.0 g x 25.0 m/s
v's  =  --------------------------------- =   -------------------------------------------------------------------------------------
                  ms   +   mg                                      750. g  +  50.0 g 

    
v's  =  20.0 m/s    ( To the Right )

   Now Substitute into the equation for v'g.
v'g  = v -  vg +  v's  =  25.0 m/s  +  15.0 m/s  +  20.0 m/s  =  60.0 m/s   (To the Right)
   
      
4.A car, 1800. kg, going 150. km/h rear ends a truck, 5500. kg going 100. km/h.  What are their velocities after an elastic collision in one dimension?
   
    
Conservation of Momentum          
mcvc  + mtvt =  mcv'c  +  mtv't  
Conservation of Energy                 vc  -  vt  =  v't  -  v'c   
    Solve Conservation of Energy for v'g      v't  = vc   -  vt  +  v'c    Substitute into Conservation of Momentum.        
 mcvc  + mtvt =  mcv'c  +  mtvc  -  mtvt  +  mtv'c              Now solve for v'c   
   
            mcvc  +  2 mtvt  - mtvc         1800. g x 150. km/h + 2 x 5500. kg x 100. km/h - 5500 kg x 150. km/h
v'c  =  --------------------------------- =   ------------------------------------------------------------------------------------------
                  mc   +  mt                                      1800. kg  +  5500. kg 

    
v'c  =  74.7 km/h    ( To the Right )

   Now Substitute into the equation for v'g.
v't  = vc   -  vt  +  v'c   =  150. km/h - 100. km/h + 74.7 km/h  =  124.7 km/h   (To the Right)
   


Monday, August 4, 2014

Slides untuk buku teks Giancoli 4th edition

From now on i'll be teaching using these slides..content exactly the same as Textbook Giancoli (4th edition) that you all should buy..